
www.manaraa.com

 1

Autonomous Selection of Indexes and Materialized Views
in Two Commerical Database Management Systems

Abdur-Rahman El-Sayed
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1

+1 519 888 4567

aaelsaye@cs.uwaterloo.ca

Hobbe Smit
University of Waterloo

200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1

+1 519 888 4567

hsmit@cs.uwaterloo.ca

ABSTRACT
The selection of the most beneficial indexes and materialized
views (MVs) is a well-known issue in physical database design.
The chosen set of indexes and MVs is crucial to the overall
performance of the DBMS as it relates to specific workloads.
Since this is such an important aspect of physical database design,
database administrators (DBAs) spend a great amount of time
selecting the best indexes and MVs for the purpose of improving
database performance. In order to reduce the total cost of
ownership, several DBMSs have tools for automating the physical
design structure selection process. Both System B and System A
have such tools, including the System B Advisor [15] and the
System A Advisor [2]. In this paper, we present an objective
assessment and comparison of both tools by defining evaluation
metrics, analyzing recommendation algorithms, extensively
testing both tools, and by providing a discussion of the results.

1. INTRODUCTION
Database management systems (DBMSs) are becoming more and
more important as their applications multiply to include not only
banking and internal inventory applications but also real-time and
batch-process e-commerce systems. Despite the use of caching,
ultimately the bulk of transactions must rely on the DBMS to
provide quick and efficient execution of workload queries.
Unfortunately, good DBAs are hard to come by and, as a result,
they also require large salaries – increasing the total cost of
ownership for a DBMS. In reaction to this trend, there has been
much work done in recent years with the goal of automating
database administration or, at the very least, reducing the load on
already over-taxed DBAs. Ground-breaking work on self-
managing DBMSs has been accomplished with respect to the
recommendation and implementation of the most efficient set of
indexes and materialized views – known as physical design
structures (PDSs). These structures provide quick access to data.
Indeed, formerly, one of the marks of a skilled DBA was the
ability to implement the most efficient indexes and MVs for a
given database being accessed with a particular workload. Thanks
to research done in the last 5 years, there is now less of an onus on
DBAs to come up with the most efficient mix of indexes and MVs
for a given scenario because many DBMSs now ship with PDS
recommendation tools. The two primary DBMSs implementing
this technology are System B and System A – both of which have
benefited from a lot of research, such as that found in
[1,2,3,4,14,15,16].

Unlike previous research on automating the selection of the
best PDSs, both System B’s and System A’s research teams have
gone far beyond what could be achieved by strictly static

approaches based on the analysis of integrity constraints, simple
statistics, and basic schema information [11]. Instead, both teams
chose to focus on the analysis of real SQL query workloads for
the purpose of creating recommendations tailored to these
workloads. Furthermore, they have successfully utilized the cost
model of their query optimizers to ensure that PDS
recommendations are actually used by the DBMS – unlike
previous work, such as [7], which used external cost models. For
both the System B and System A teams the goal is to generate the
best recommendations given a set of constraints. The problem
they face is as shown below:

Problem statement: Given a workload W (a set of SQL
statements), a disk space constraint D, a time limit T, find
the set of indexes and materialized views
recommendations that reduces the workload cost the most
within the time limit T, while using no more space than D.

Given the problem statement, it is clear that the problem of
recommending the best PDSs is not easy – especially considering
the fact that all the queries in the workload need to be considered
and the fact that an exponential set of PDS combinations must be
explored. In light of those facts, we are interested in seeing just
how well the recommendation tools found in System A and
System B solve the problem stated above.

In order for an objective comparison to be made we designed the
appropriate evaluation criteria for assessing the various tests that
we executed. Tests comparing System A Advisor and System B
Advisor were evaluated using the concepts of: relative workload
improvement, improvement estimation accuracy, scalability,
workload compression, and constraint conformity. The first two
metrics were used primarily for the first test involving a slightly-
modified TPC-H workload [13] tested using various space
constraints. The third and fourth metrics were each used to
evaluate independent tests using other variations of the TPC-H
workload. The last metric was used to evaluate how well the
recommendation tools conformed to time and space constraints
for all the tests executed. The aforementioned tests all involved
the recommendation of both indexes and MVs. Another set of
tests was run to compare the recommendations generated in
indexes-only and MVs-only modes. Other experiments included a
test that involved swapping the indexes-only recommendations of
both recommenders and then measuring workload improvement –
resulting in some surprising results. Finally, we also ran a group
of tests against a real-world protein sequence database with two
manually-created workloads.

www.manaraa.com

 2

Before we present our results, however, we first provide an
overview of both the System A Advisor and System B Advisor in
Section 2, along with a brief comparison of these two tools. In
Section 3, we discuss the evaluation criteria used for the
experimental assessment of both recommenders. Afterwards, we
present the experimental setup and test design in Section 4. The
experimental evaluation of both tools follows in Section 5. In
Section 6, we provide some observations and note the limitations
of both recommenders. Finally, we present related work and our
conclusion in the last two sections of the paper.

2. OVERVIEW OF ADVISORS
In this section, we present an overview and comparison of both
recommendation tools that were evaluated in our experiments.
Both tools are generally capable of recommending indexes,
materialized views, and database partitions. Our focus is on
recommending both indexes and MVs, indexes only, and MVs
only. An architectural overview of both recommendation tools is
presented in Figures 1 and 2, which are taken from [16] and [1].

2.1 Input Parameters
As shown in Figures 1 and 2, a workload is given to both
recommendation tools. The workload given can be a single SQL
statement or a file containing several SQL statements. In the case
of System B, the workload can also be a list of recently executed
SQL statements available from the query cache or from a
powerful query management tool included in an extension for
System B [9]. For System A, a trace file can be used as a
workload; the trace file can be created by running a profiler tool
while a workload is being executed against the database. SQL
statements can be extracted from events in the trace file [10].

Along with the workload, a space and time constraint is set for
both recommendation tools. System B Advisor also allows the
user to enable a sampling option, which is used to gather more
reliable and accurate estimates for the candidate objects being
generated. System A Advisor has sampling turned on by default
[3,14].

Once the recommendation process is initialized by the user, each
recommendation tool starts by generating candidate MVs and
indexes. Having generated the candidate objects, each tool
proceeds to select the optimal (or near-optimal) configuration
among the generated candidate objects.

2.2 Candidate MVs Generation
Candidate MVs (also known as Materialized Query Tables, or
MQTs) are generated differently by the two recommendation
tools. System B considers the following techniques for generating
MV candidates:

i. Converting queries in a given workload into MVs.

ii. Materialization of existing logical (non-materialized)
views in the database.

iii. Use of MQO (Multiple-Query Optimization) to generate
candidate MVs. MQO is a sophisticated technique used
to find common sub-expressions among multiple
queries [17].

On the other hand, System A uses the concept of “interesting
table-sets” to generate MV candidates.

Figure 1. Design Overview of System A Advisor

Figure 2. Design Overview of System B Advisor

Basically, a table-set (a subset of tables referenced in a query in
the workload.) is considered “interesting” if materializing one or
more views on it leads to a decrease in execution time, i.e.
workload cost, above a given threshold. After identifying
interesting table-sets, the System A Advisor generates a set of
candidate MVs for each query that references an “interesting”
table-set and then selects the best subset for that particular query.
The union of the best subsets produces the final set of candidate
MVs. The algorithm then generates an additional set of “merged”
MVs that benefit multiple queries [1].

www.manaraa.com

 3

2.3 Candidate Index Generation
For candidate index generation, System B Advisor uses the
“Smart column Enumeration for Index Scans” (SAEFIS)
enumeration algorithm. The algorithm analyzes the predicates and
clauses of both the workload statements and MV candidates to
produce candidate indexes. In addition to the SAEFIS algorithm, a
different enumeration algorithm, namely the “Brute Force and
Ignorance” algorithm, is also used to generate extra candidate
indexes. Details about the SAEFIS and BFI algorithms can be
found in [16].

On the other hand, System A Advisor first considers all of the
“admissible indexes” – that is, indexes that are syntactically
relevant for the workload and candidate MVs. Afterwards, the
DTA prunes the space of “admissible indexes” using the query-
specific-best-configuration algorithm, which is detailed in [3].

2.3 Configuration Enumeration
Having generated candidate MVs and indexes, both tools proceed
to the configuration enumeration phase. The System B advisor
first estimates the size (cost) and benefit of each candidate object
by using the optimizer estimates or, optionally, a sampling
technique that provides more reliable and accurate size estimates.
Once the benefit and cost for each candidate object is determined,
the “Combinatorial Selection Algorithm” is initiated to select
those objects with the highest benefit-to-cost ratio, that conforms
to the given space constraint. Afterwards, the algorithm enters a
swapping stage where it iterates over candidate objects that were
not chosen before to find a better candidate set. Finally, the
algorithm filters the solution by eliminating candidate indexes and
MVs which were not used in the workload.

For the System A Advisor, configuration enumeration is
performed by the Greedy(m,k) algorithm, which produces a final
configuration with a total of k indexes and MVs. The algorithm
starts by picking an optimal configuration of size m, where m is
less than or equal to k, through enumerating in an exhaustive
manner all of the configurations of size m or less. Afterwards, the
algorithm picks the remaining (k - m) structures greedily, until all
k physical structures have been chosen, or no further reduction in
cost is possible, as described in [1,3].

2.4 Workload Compression
In order to improve the scalability of the recommendations tools,
each vendor has incorporated a workload compression module
that reduces/compresses the given workload. Both tools have
entirely different compression algorithm – as described in this
section. System B Advisor uses a simple built-in workload
compression module. The module starts by estimating the size of
all the queries in the workload and then orders them in a
descending order. Afterwards, the module generates a new
workload, consisting of the Top K queries, where the total cost of
those queries is less than or equal to a certain percentage of the
total workload cost – as presented in Equation 1.

)(*%)(WorkloadCostXTopKCost ≤ [Equation 1]

The new workload is then used as the input for the System B
Advisor. Instead of allocating the responsibility of determining X
on the user, the compression module uses 3 levels of compression,
HIGH (X=5), MEDIUM (X=25) and LOW (X=60) [15].

On the other hand, System A uses a complex workload
compression technique that uses clustering methods from the field

of data-mining. The technique uses the concept of a “distance”
between queries in a workload to remove similar queries from the
workload up to a certain workload cost increase threshold. Further
details about System A’s compression technique can be found in
[5].

3. EVALUATION CRITERIA
In order to facilitate an objective comparison between both
recommendation tools we have developed the following
evaluation criteria.

3.1 Relative Workload Improvement
A key performance metric for the bulk of our tests was relative
workload improvement. The rationale behind choosing relative
workload improvement over absolute workload improvement was
that we wanted to ensure a fair comparison between two different
DBMSs – each running on a machine with a slightly different
CPU speed. In either case, in order to measure workload
improvement we had to establish a baseline for each workload
used in our tests. Having established a baseline, we derived the
relative workload improvement for a given recommendation tool
by measuring the overall change in workload execution time
before and after the implementation of recommended indexes and
MVs. Since we had decided on using relative workload
improvement, the change in execution time was measured using a
percentage value. Comparisons between recommendation tools
could then be made using this value.

3.2 Improvement Estimation Accuracy
In order to determine the improvement estimation accuracy of
each recommendation tool the final estimate given by the tool was
compared with the actual workload improvement measured after
implementing recommendations. Since improvement estimates
were given in percentage values, deriving the estimation accuracy
in terms of percentage error simply involved taking the absolute
difference of the relative workload improvement and the
estimated improvement. Although this performance metric could
be construed as a query optimizer performance metric, we decided
that it was nevertheless a good idea to evaluate estimation
accuracy since it is integral to the proper functioning of each
recommendation tool.

3.3 Scalability of Recommendation Tools
A simple, yet effective, performance metric was used to evaluate
the scalability of each recommendation tool; the metric used was
the ability to process SQL workloads scaled from 19 queries up to
420 queries. In order to facilitate a proper evaluation of
scalability, all these tests were run with unlimited
recommendation time. Furthermore, workload compression was
disabled so that raw scalability could be tested.

3.4 Workload Compression Evaluation
Since each vendor claims to own a workload compression
technique that does not sacrifice the quality of the
recommendations, we decided to assess the impact of the
workload compression. The metrics used to evaluate workload
compression included: a) the decrease in recommendation time,
and b) the decrease in the quality of the recommendations. The
decrease in recommendation quality was determined by the
percentage increase in workload execution time when the post-
recommendation time of recommendation without compression is
subtracted from the post-recommendation time observed for
recommendations generated with compression.

www.manaraa.com

 4

Unfortunately, we found that System A does not provide means to
enforce workload compression. However, System B’s advisor
allows us to specify the level of workload compression. In order
to assess the workload compression algorithms used by both
vendors, we designed variations of the TPC-H workloads that
include 105, 210, 306, and 420 queries

3.5 Constraint Conformity
Time and space constraints are important parameters for both
recommendation tools. We are interested in assessing how well
both recommenders conform to those constraints. For an objective
assessment, it is important to carefully select those constraints.
Further details concerning constraint design and selection are
presented in Section 4.2.

4. EXPERIMENTAL SETUP
In this section we present the setup and design of our experiments.
The experimental systems are first presented, along with
important procedures. Our test design is then described – focusing
on how we designed and selected parameter values. The section
finishes with a description of the databases and workloads used.

4.1 Environmental Setup
Our experiments were run on two different systems – one for each
DBMS. Both systems were Pentium 4 systems running Windows
XP Professional with 1 GB of RAM. However, System B was
installed on a system having a 2 x 2.8 GHz CPU, while System A
ran on a machine having a 2 x 3.2 GHz CPU.

Since both Databases run on a dual CPU machine, they are both
capable of exploiting parallelism in query execution. Indeed, we
have noticed that SQL Server utilizes parallelism quite well for
query execution, especially when compared to System B.
Therefore, we have disabled parallelism for both databases in
order to put both on the same level in terms of query execution
times.

Before executing workloads or running recommendation tools the
database table statistics were updated. After recommendations
were generated and implemented the database cache and buffer
pool were emptied to minimize the factors influencing workload
execution time. Having assurance that the queries being executed
do not benefit from the query cache and DBMS buffer pool, the
workload was executed and the execution time was recorded for
comparison against a baseline.

4.2 Test Design
Since each database vendor has its own optimizer and its own way
of processing queries, we had to carefully design the experimental
tests. Objective evaluation of both recommendation tools required
us to properly set the parameters and constraints for both
recommendation tools.

As mentioned before, both recommendation tools have various
tuning parameters. The primary parameters we used in our
experiments imposed space and time constraints and turned
sampling on/off. Unfortunately, we could not use these parameters
to their full potential due to certain issues. For instance, we
noticed that System B’s Advisor violates the time constraint in
many cases. Clearly this is because it considers the time constraint
only at the final swapping stage. We also realized that System A
was running on a system with a faster CPU than System B. Both
issues could lead to an unfair comparison of recommendation
results and time constraint conformity results. Therefore, we have

decided to use an unlimited time constraint for all of our
experiments.

Although not as problematic as the time constraint parameter, we
have opted to compute the space constraint as a percentage of
current database size. Our reasoning is illustrated by a simple
index space calculation: an index on the TPC-H lineitem table
consumes 216 MB in System B while it consumes 197 MB in
System A. Clearly, it would be unfair to give the same amount of
storage space as a constraint since both DBMSs have different
storage requirements for the same indexes. The space constraints
that we decided on were the following: 30%, 120%, 200%, and
500%. The first constraint was chosen to represent a minimum
value that restricted MVs and indexes to a space less than the size
of the database. 120% was chosen as the token value above the
database size. The other values were chosen to determine how
well each recommender performs with large space constraints.

Other than space and time constraints, we decided to set the
System B sampling parameter to “ON” for all but one test. This
was done in the interest of increasing the objectivity of our
testing, since sampling is on by default in SQL Server.

4.3 Databases and Workloads
For our tests we have used two data sets: the often-used TPC-H
Benchmark [13] and the PIR Protein Sequence Database [12]. The
original data size was 1 GB of data in 8 tables for the TPC-H
dataset and 980 MB of data in 16 tables for the PROTEIN dataset.

As for the workloads, for TPC-H we have used variations on the
original 22-queries workload which include workloads with 19,
21, 105, 210, 306, and 420 queries. The first workload we used
was the 21-query workload (TPCH-1) – which had query 15
removed. We had to remove query 15 because System B Advisor
could not handle “CREATE VIEW” statements within the
workload. The 19-query workload, referred to as TPCH-2, was
created in reaction to test results found for the TPCH-1 workload.
In order to provide a more fair comparison we decided to remove
queries 17 and 20 from TPCH-1, since their baseline execution
times were large when run using SYSTEM B – introducing a bias
in favour of SYSTEM B. For the protein database, we have
constructed two of our own workloads, using different types of
query-families. We developed queries with potentially “hot”
indexes, where a “hot” index is defined as an index on a column
in a (1) WHERE clause, (2) GROUP BY clause, and/or (3)
ORDER BY clause. The PROTEIN-1 workload consisted of 35
queries, while the PROTEIN-2 workload consisted of 30 queries.

5. EXPERIMENTAL EVALUATION
Our experimental results are presented in this section. Here we
present results for the TPC-H database comparing workload
improvement for various space constraints. Next, indexes-only
recommendations for both recommenders are compared with
MVs-only recommendations and combined recommendations.
After these tests, we swap indexes-only recommendations
generated by both recommendation tools and compare the change
in improvement over the native recommendation. We then present
results for our tests using the PIR protein database. Following our
workload improvement results we also evaluate the results found
for the workload improvement estimation accuracy, scalability,
and workload compression tests.

www.manaraa.com

 5

5.1 Workload Improvement
5.1.1 Results using TPCH-1
Our first experiment was to assess the impact of both advisors on
improving the workload execution cost. In the first step of
experiments, performed with the TPCH-1 workload, we varied the
space constraint, and provided an unlimited time constraint for
both advisors. The space constraint used for the experiments was:
30%, 120%, 200%, and 500%. The results indicating the actual
workload improvement are presented in Figure 3.

Figure 3. Space Constraint Test Results

As expected, the graph shows that the actual workload increased
for both SYSTEM B and SQL Server whenever the space
constraint was increased, since there is more space available for
extra MVs and indexes. Also observe that the actual improvement
for SYSTEM B was significantly higher than for SQL Server –
for all of the tests.

5.1.2 Results using TPCH-2
For the next set of experiments, we used TPCH-2 to determine the
performance of the recommendation tools for the following
recommendation modes: indexes only, MVs only, and both
indexes and MVs. We also ran a test to determine the
improvement when indexes-only recommendations were
swapped. For both tests, the space constraint was fixed at 200%,
since we believe such a constraint is reasonable for most
databases.

First, we present the baseline execution time for both databases.
As can be noted in Figure 6 (on the next page), both SYSTEM B
and SQL Server baselines show similar execution time patterns.
Having established a more objective baseline we present our first
test using TPCH-2. The actual TPCH-2 workload improvement
achieved for each of the three recommendation modes is shown in
Figure 4, which shows that both tools produced significant
workload improvement for the first two recommendation modes.
Yet, SYSTEM B had a larger improvement than SQL Server,
particularly when only MVs were recommended. Such a result
can be partially explained by the fact that SYSTEM B
recommended exactly twice as many MVs as SQL Server did (8
vs. 4). Furthermore, after the analysis of the query execution
plans, we observed that, for SQL Server, each of the 4 MVs only
benefited a single query each. On the other hand, for SYSTEM B,
the 8 recommended MVs benefited a total of 10 queries. Finally,
for SYSTEM B, we observed a significant reduction in the
execution time of queries that exploited MVs. For instance, the
execution time for query 6 decreased from 21.574 seconds to

1.297 seconds. However, the most improved query found for SQL
Server, query 4, had its execution time decreased from 23.667
seconds to 18.821 seconds. Clearly, SYSTEM B utilized the
recommended MVs better than SQL Server did.

Figure 4. Results for Various Recommendation Modes

After running our first batch of TPCH-2 tests we could use the
indexes + MVs recommendation result to give an idea of the
TPCH-1 baseline bias. By comparing the TPCH-2 and TPCH-1
results for the 200% space constraint we noted that SYSTEM B
still has superior improvement. Hence, we decided to keep our
TPCH-1 test results.

To further verify our assumption that SYSTEM B’s advisor
results in a higher workload improvement than System A’s DTA,
we have decided to swap the indexes-only recommendations and
compare the results.

5.1.3 Swapped Recommendations
An important condition in our swapped recommendations test was
the requirement that the recommendations were not to exceed the
provided disk space constraint. In other words, if SYSTEM B’s
swapped recommendations consumed over 200% of the SQL
Server TPC-H database size, the results would be insignificant,
and vice-versa. Fortunately, in our swapped indexes only
experiment, the space constraint was not violated. The results of
the experiment are shown in Figure 5.

Figure 5. Results found for Swapped Recommendations

Although we could not implement the SQL Server
recommendations in SYSTEM B due to reasons given later in this
section, we found that after applying the recommendation of
SYSTEM B on SQL Server, workload execution time improved

www.manaraa.com

 6

by 6.476% for SQL Server when compared to its original recommendation.

TPCH-2 Baseline

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q16 Q18 Q19 Q21 Q22

E
xe

cu
tio

n
Ti

m
e
(s

ec
)

System B

System A

Figure 6. Baseline Query Execution Times for TPCH-2 Workload

As shown in Figure 5, the swapped recommendations for SQL
Server improved the actual workload by 62.86%, even higher than
both SYSTEM B and SQL Server’s original indexes-only
improvement, which suggests that SQL Server could have
provided better recommendations. We believe there are several
reasons for that result. First, we note that SYSTEM B
recommended 38 indexes while SQL Server recommended only
13 indexes. The number of indexes recommended by both
advisors is shown in Table 1.

Table 1 Indexes Recommended in INDEXES-ONLY Test

Table # Indexes
(SYSTEM B) # Indexes (SQL Server)

LINEITEM 11 10

ORDERS 7 2

CUSTOMER 5 0

NATION 5 0

SUPPLIER 4 0

PARTSUPP 3 1

PART 2 0

REGION 1 0

As shown in Table 1, SYSTEM B recommended more indexes for
each table in the database. Although we do not claim that more
indexes implies more workload improvement, there does appear
to be a strong correlation between the recommendation of many
indexes that are used by multiple queries and the overall
workload benefit gained from these indexes. Indeed, although
some queries had a longer execution time on SQL Server with
SYSTEM B recommendations, the total execution time after those
recommendations were implemented on SQL Server was less by
22.424 seconds.

The largest improvement was found for query 5, which took
18.408 seconds to execute on SQL Server with its own
recommendations and only 5.693 seconds using SYSTEM B
recommendations. Query 7 also had an impact on the difference

of both actual workload improvements, since it took 10.751
seconds to execute with original recommendations and 6.296
seconds with SYSTEM B recommendations. The other queries
had negative or negligible improvement. After analyzing the
execution of both queries, we have realized that query 5, when
executed with SYSTEM B’s recommendations, exploits 6
indexes, on the following tables: NATION, REGION,
SUPPLIER, LINEITEM, ORDERS and CUSTOMER. However,
when the same query is executed with SQL Server
recommendations, it uses one primary (already existing) index
and two recommended indexes on the 2 largest tables in the
database – namely LINEITEM and ORDERS.

We note that the original execution plan of query 5 uses only one
primary index-scan and the rest of the operations are table-scans,
whereas the execution plan of query 7 does not exploit any
indexes and relies completely on table-scans.

For query 7, when using SQL Server recommendations, the
optimizer uses the same two indexes used when query 5 was
executed, namely, indexes on the LINEITEM and ORDERS
tables. In contrast, when SYSTEM B’s recommendations were
applied, the optimizer chose 3 different indexes (different than
those chosen for query 5) on CUSTOMER, ORDERS and
NATION, and the same indexes used in query 5 for LINEITEM
and SUPPLIER tables. We believe that the rich set of indexes
recommended by SYSTEM B was the main factor in enhancing
both query 5 and query 7 when executed by SQL Server, resulting
in a 6.476% increase in actual workload improvement.

An important note here is that although the size of both REGION
and NATION tables is small compared to other tables, SYSTEM
B’s indexes on these tables belonged to the set of indexes that
improved query 5 and query 7 when executed by System A.
Unlike SQL Server, SYSTEM B considers a very huge space of
candidate indexes. Furthermore, it does not perform any pruning,
whereas SQL Server does. The latter considers “admissible”
indexes and further prunes those indexes using the query-specific-
best-configuration algorithm described in [3]. Since it does no
pruning, SYSTEM B’s algorithm results in a larger index space,
and therefore a potentially better workload improvement.
However, not pruning the candidate structures space may have a

www.manaraa.com

 7

negative effect on the scalability of the recommendation tool, as
described in Section 5.3.

Given the surprising results for implementing SYSTEM B
recommendations on SQL Server, it was unfortunate that we were
unable to test the recommendations provided by SQL Server on
SYSTEM B. Such a test was unfeasible due to the fact that
creating an index with an INCLUDE clause in SYSTEM B
requires that the index be UNIQUE [8]. The previous restriction
was not imposed by SQL Server, so not all its recommendations
were compatible with SYSTEM B.

5.1.4 Results using PROTEIN Workloads
The last of our workload improvement experiments was done
against a real-world database and two manually generated
workloads. The results of our test are shown below, in Figure 7.

Figure 7. Improvement found for Protein Workloads

It is evident once again that SYSTEM B provided superior results.
A partial explanation for such a large difference is that SYSTEM
B recommended at least 3 times the number of indexes that SQL
Server did and more than twice the number of MVs. However, it
is more important to note that the SQL Server baseline execution
time was much shorter than SYSTEM B, so a high percentage of
improvement would be hard to attain. To get a rough idea as to
whether this was the primary factor involved, we considered
SYSTEM B’s improvement found for only those PROTEIN-2
queries whose SYSTEM B baseline execution time was less than
a given threshold. The threshold was set to be the maximum
individual query execution time for SQL Server’s baseline. As a
result, SYSTEM B’s improvement dropped to 20.77%. Given that
SQL Server’s improvement was 12.92%, the new result is
comparable to previous workload improvement test results.

5.2 Improvement Estimation Accuracy
In this section, we present a comparison between the estimated
and actual workload improvement as returned by both
recommenders. We then present the average error of each
workload’s improvement estimates. The actual and estimated
improvements found for both recommenders are shown in Figures
8 and 9 for TPCH-1 and TPCH-2 workloads respectively.

Figure 8. TPCH-1 Improvement Estimates

Figure 9. TPCH-2 Improvement Estimates

As can be seen for both workloads, in most cases SYSTEM B’s
estimates were a lot more accurate than those of SQL Server. In
addition, for TPCH-1, SYSTEM B never over-estimated the
actual workload improvement, while SQL Server always over-
estimated the actual improvement.

Using the Figure 8 as a baseline, it is clear that for the MVs-only
recommendation (shown in Figure 9) SYSTEM B breaks its trend
of never over-estimating improvement and provides a somewhat
liberal estimate. We observe that the only case where SQL Server
provides a better estimate than SYSTEM B is shown in Figure 9
for the indexes-only test. Using the results shown in the previous
figures we derived the average estimation error, which is
displayed in Figure 10.

Average Error of Improvement Estimates

0

2

4

6

8

10

12

14

16

18

20

System A System B

A
ve

ra
ge

 E
rr

or
 (%

)

TPCH 1

TPCH 2

Figure 10. Average Improvement Estimation Error

www.manaraa.com

 8

Clearly, the overall estimation accuracy for both workloads was
better for SYSTEM B. Note, however, that estimation accuracy is
highly dependent on the optimizer. Nevertheless, we present these
results as a part of our broad assessment of both recommendation
tools.

5.3 Scalability Test
For the scalability test, we wanted to test the “raw” scalability of
both advisors, that is, without the benefit of workload
compression. We disabled workload compression for SYSTEM B
using the “-k OFF” parameter for System Badvis command line.
Unfortunately, System A does not provide means to
enable/disable workload compression, although [2] indicates that
the module is incorporated into System A. Nevertheless, there is
much evidence leading us to suspect that the workload
compression module is not installed, or is not enabled. First, in
contrast to SYSTEM B workload compression, there is no
application documentation on any available workload
compression parameters for the DTA. Second, we have observed
that when the DTA is executed with a large workload, it takes a
very long time compared to System B Advisor with workload
compression – almost 6 hours with a 210-query workload. Since
SYSTEM B took just over 4 hours to tune the same workload
without compression, this is compelling evidence for our
aforementioned conclusion.

Table 2 Scalability Test Results

 For our scalability tests the following workloads have been
provided for both recommenders: TPCH-1, TPCH-2, TPCH-3,
TPCH-4, TPCH-5 and TPCH-6, consisting of 19, 21, 105, 210,
306 and 410 queries respectively. For these tests we are simply
interested whether or not the recommendation task successfully
completed with recommendations. The results of the tests are
presented in Table 2, which indicates that SQL Server was able to
cope with all the workloads, and provided recommendations for
each test.

On the other hand, SYSTEM B was not able to provide
recommendations for the 420-query workload (TPCH-6) when
compression was disabled, unlike when compression was set to
MEDIUM. The SYSTEM B advisor consumed all of the available
disk space and exited with a critical error after evaluating 137,670
configurations. This unusual result can be explained by
considering that the System B Advisor selection algorithm injects
a huge amount of virtual indexes and materialized views into the
database, generates their statistics, and then computes the
execution cost of every workload query [16].

As a result, the free disk space on which SYSTEM B was
installed, which was approximately 18 GB was consumed
completely by the System B Advisor. We therefore conclude that
the SYSTEM B advisor does not scale with large workloads
because it does not substantially prune the space of candidate
indexes and MVs. On the other hand, it appears that System A is
able to deal with large workloads quite well, assuming that
workload compression was not incorporated into the Beta version
we were using.

5.4 Workload Compression Evaluation
In this experiment, we wanted to assess the impact of workload
compression on both the advisor execution time and the drop in
quality of the recommendations produced. Unfortunately, we
could not assess SQL Server’s workload compression module due
to the reasons noted earlier. Therefore, only SYSTEM B workload
compression module is assessed.

As mentioned earlier, SYSTEM B has 4 options for workload
compression: OFF, LOW, MEDIUM and HIGH. We have
decided to use MEDIUM and HIGH for assessing the impact of
workload compression on the advisor execution time, using a
workload consisting of 105 queries (TPCH-3). Figure 11 shows
the impact of the workload compression on the advisor execution
time when the TPCH-3 workload was used.

Impact of Workload Compression (System B)

0

50

100

150

200

250

300

HIGH MED OFF

Compression

A
d

vi
so

r
E

xe
cu

ti
o

n
 T

im
e

(m
in

)

Figure 11. SYSTEM B Workload Compression Results

As displayed in the above graph, the original advisor execution
time (with no compression) was approximately 4.3 hours. When
workload compression was enabled with MEDIUM and HIGH,
the execution time dropped to 6.3 and 7.3 minutes respectively.
Clearly, the reduction of execution time was very impressive.

Since MEDIUM is the default level of compression, we have
decided to test the impact of workload compression on the drop of
recommendation quality in using that level. Essentially, we ran
the advisor using the TPCH-3 workload, MEDIUM compression,
unlimited time, and a 200% space constraint. We then
implemented the recommendations, and compared the actual
workload improvement with the actual workload improvement
achieved by the recommendations when workload compression
was disabled (OFF). The results are show in Figure 12.

of
Queries

SYSTEM B
Advisor
(no comp.)

SYSTEM B
Advisor
(med. comp.)

System A
Advisor

19 pass pass pass

22 pass pass pass

105 pass pass pass

210 pass pass pass

306 pass
(no sampling)

pass pass

420 fail pass pass

www.manaraa.com

 9

Impact of MEDIUM Workload Compression (System B - TPCH-3)

0

10

20

30

40

50

60

70

80

90

100

Increase in Workload Execution Time
(compared to NO COMPRESSION)

Reduction in Recommendation Time

P
er

ce
nt

ag
e

(%
)

Figure 12. Impact of Workload Compression on SYSTEM B

As shown in Figure 12, SYSTEM B’s workload compression
technique significantly reduces the advisor execution time – up to
97%. On the other hand, we noticed that the workload execution
time increased by 43% compared to the workload execution time
when “no compression” recommendations were implemented.
Our rationale of why such a dramatic trade-off occurred is based
on the simplistic approach of SYSTEM B’s compression
algorithm. The algorithm, as explained earlier, picks up the top K
queries where the total cost of those queries is less than or equal
to a certain percentage of the workload cost. As a result, in many
cases where almost of all the queries in the workload have a high
cost, as is the case for TPC-H queries, many queries in the
workload are pruned without considering the fact that they also
have high execution costs. As a result, the drop in quality in some
cases may be unsatisfactory. We believe SYSTEM B’s algorithm
is geared towards pruning and not compression, even though the
authors claim that their approach compresses workloads and is
comparable with SQL Server’s approach, as stated in [15]. To
further illustrate the weakness of SYSTEM B’s workload
compression approach, we present the following scenario:
Consider a workload, consisting of 50 queries, where the cost of
the any query is determined using the following equation, where I
is the query number:

F(I) = 5000 – 20 * I [Equation 2]

Using Equation 2, the first query’s cost is 5000, the next query
costs 4980, the next costs 4960, and so on. Therefore, the total
workload cost = 5000 * 50 – 20 * [50 * (50 + 1) / 2] = 224,500
timerons (a SYSTEM B metric). Assuming medium compression
is enabled, the algorithm will pick the top K queries where their
total cost is less than or equal to 25% of total workload cost (i.e.,
56,125 timerons). Given the aforementioned threshold, only 11
top K queries will be chosen since the total cost of those queries is
less than or equal to 56,125 timerons. The rest of the 39 queries
will be pruned without any consideration. We argue that it is
common to have a workload consisting of high cost queries where
the difference between the costs of all queries is not very
significant. In such a scenario, SYSTEM B’s compression
algorithm prunes a large number of queries without any
consideration, and produces unsatisfactory results.

Even though we did not test SQL Server’s workload compression
module, which based on a complex technique that relies on data-

mining concepts [5], we strongly believe it is more efficient than
SYSTEM B’s approach, since it takes into account the similarities
of the queries in the workload. Not to mention, it has been shown
in [5] that the SQL Server workload compression module may
actually lead to higher-quality recommendations than those
produced using an uncompressed workload.

6. OBSERVATIONS AND LIMITATIONS
While experimenting with both SYSTEM B and SQL Server
advisors, we have observed several anomalies and limitations
within both advisors. In this section, we discuss and analyze them
in detail.

6.1 “Suffered Queries”
After implementing the recommendations produced by both
advisors, we have noticed that some of the workload queries have
“suffered”. That is, their execution time took longer after
applying the recommendations of the advisor. For example, when
using the TPCH-1 workload on SYSTEM B, and running the
advisor with unlimited time and a space constraint of 500%, we
noticed that query 2 had a longer execution time after applying
the recommendations; the query took 6.531 seconds before the
recommendations were applied and 12.046 seconds after, a 5.515
second increase in execution time. It should be noted that this
issue is not the caused by the advisor, but rather by the optimizer.
By analyzing the optimizer’s execution plan for query 2 before
and after the recommendations, we have noticed that all of the
table-scan operations were swapped by an unclustered index-scan
when the recommendations were applied. Such a swapping
resulted in increased execution cost, since for that particular
query, most of the rows of the referenced tables were fetched
(having a high selectivity) and the use of an unclustered index-
scan adds an overheard to the total I/O cost. It is important to note
the optimizer depends heavily on the current statistics, which we
updated at every stage of the recommendation and testing process.

6.2 SYSTEM B “Indexes Only” Mode
We have noticed that, upon giving the TPCH-2 workload as an
input for the SYSTEM B advisor and running it in “indexes only”
mode, the advisor does not generate any recommendations when
given a space constraint of up to 3 GB, even though it evaluates
3082 solutions. Yet, when a space constraint of 3100 MB was
given, the advisor recommended 38 indexes with an actual
workload improvement of 61.95%. The reason behind these
unusual results was clear after we queried the
ADVISE_WORKLOAD table and discovered that the
COST_BEFORE and COST_AFTER columns, which represent
the estimated cost for a query before and after implementing
recommendations, for all 19 queries were the same. What is not
clear is how the addition of only 100 MB to the space constraint
had the impact of positively changing the COST_AFTER value
for 17 out of 19 queries, resulting in an estimated improvement of
37.86%.

To further investigate this issue, we ran the advisor in “indexes-
only” mode and supplied it with the PROTEIN-1 workload and a
small space constraint of 500 MB. Unlike the TPCH-2 workload
results, the advisor recommended 7 indexes that would improve
the workload by 1.55%. We conclude that the complex structure
of the TPC-H queries may have caused the advisor not to
recommend any indexes within a space constraint of 3GB.
Nevertheless, we admit that such a “no recommendation” result is

www.manaraa.com

 10

not convincing, and that it bears further investigation and analysis
with the help of System B’s support team.

6.3 System B’s Sampling vs. No Sampling
The authors of [16] claimed that with sampling enabled, the
System B advisor is capable of obtaining more accurate statistics
and, thus, higher quality recommendations. In light of the above
statement, we assessed the impact of enabling sampling in terms
of the advisor execution time and the actual workload
improvement. We note that sampling is used only for obtaining
statistics for candidate MVs, but not statistics for candidate
indexes. We ran the System B advisor in “Indexes and MVs”
mode, with an unlimited time constraint, a 200% space constraint,
and the TPCH-2 workload. The results are presented in Table 3:

Table 3 Sampling Parameter Test Results

Sampling # of
Indexes

of
MVs

Estimated
Improvement

Actual
Improvement

Advisor
Execution

Time
(minutes)

ON 38 8 71.46 % 72.033 % 36.02

OFF 32 6 57.54 % 54.085 % 2.53

From the results, we note that the number of recommended
indexes and MVs increased when sampling was enabled. Indexes
increased from 32 to 38 and MVs from 6 to 8. The addition of
those new indexes and MVs resulted in increasing both the
estimated and actual workload improvement, verifying the claim
presented in [16]. We also note that when sampling was enabled,
more accurate statistics lead to an improvement estimate that was
very close to the actual improvement. In contrast, when sampling
was disabled, the improvement estimate was inaccurate and
overestimated the actual improvement.

Despite the advantages obtained when sampling is enabled, one
can notice its trade-off in the significant increase of the advisor
execution time. In this particular recommendation experiment, the
advisor execution time was increased by 1344% – a significant
increase. It is also important to note that a time constraint of 5
minutes given to the advisor with sampling enabled and all other
parameters remaining as previously mentioned, would have been
violated easily. This violation is due to the nature of the advisor’s
selection algorithm, which only takes into account the time
constraint at the final swapping stage.

7. RELATED WORK
As far as we are aware, there has not been any direct comparison
between two autonomous recommenders in the literature of
database systems. However, the authors of [6] designed a
benchmark for autonomic configuration recommenders, which
can be used to compare the quality of recommendations produced
by one or more recommenders on the same database system.
These authors note that the question of comparing two
autonomous recommenders is not an objective of their work and
should be addressed separately. Hence, we have focused on
comparing two different recommenders running on two different
database systems.

In addition, the authors of [6] proposed a new metric, namely
“cumulative frequency”, for assessing workload
recommendations. We argue that such a metric is not effective in
comparing recommenders on different database systems, due to its

high dependence on the execution order of the queries in the
workload.

8. CONCLUSION
After a broad and extensive experimental evaluation of two
recommendation tools capable of producing integrated
recommendations containing both indexes and MVs, it is clear
that both the System A Advisor and System B Advisor are very
useful for database administrators. They allow for significant
improvements to be made to complex real and synthetic
workloads. Nevertheless, after presenting what we hope is an
objective assessment, we note that the System B Advisor was
better than the System A Advisor in two key areas: relative
workload improvement and improvement estimation accuracy.
Compared to System B, the System A Advisor was better in terms
of constraint conformity, scalability to large workloads, and, in
our algorithmic analysis, workload compression.

Future work in this area should include an investigation of the
impact of having UPDATE queries in the workload, and how their
associated negative impact affects the relative workload
improvement and the overall quality of the recommendations.

9. REFERENCES
[1] Agrawal S., Chaudhuri S. and Narasayya V. Automated

Selection of Materialized Views and Indexes for SQL
Databases. Proceedings of the 26th International Conference
on Very Large Databases (VLDB00), Cairo, Egypt, 2000.

[2] Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A. P.,
Narasayya, V. R., and Syamala, M. Database Tuning Advisor
for Microsoft SQL Server 2005. Proceedings of the 30th
International Conference on Very Large Databases
(VLDB04), Toronto, Canada, 2004.

[3] Chaudhuri, S. and Narasayya, V.R. An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. Proceedings
of the 30th International Conference on Very Large
Databases (VLDB97), Athens, Greece, 1997.

[4] Chaudhuri, S. and Narasayya, V.R AutoAdmin 'What-if'
Index Analysis Utility. Proceedings of the ACM SIGMOD,
1998.

[5] Chaudhuri, S., Gupta, A. K., and Narasayya, V. K.
Compressing SQL Workloads. Proceedings of the ACM
SIGMOD, 2002.

[6] Consens, M., Barbosa, D., Teisanu, A., and Mignet, L. Goals
and Benchmarks for Autonomic Configuration
Recommenders. Proceedings of the ACM SIGMOD, 2005.

[7] Hobbs, L. and England, K., Rdb/VMS A Comprehensive
Guide, Digital Press, 1991.

[8] IBM DB2 Information Center.
http://publib.boulder.ibm.com/infocenter/System
Bhelp/index.jsp

[9] IBM DB2 Query Patroller,
http://www.ibm.com/software/data/System B/querypatroller/.

[10] Microsoft Developer Network Library.
http://msdn.microsoft.com/library/default.asp

[11] Peter, C. and Gurry, M., ORACLE Performance Tuning,
O’Reilly & Associates, Inc. 1993.

www.manaraa.com

 11

[12] PIR International Protein Sequence Database.
http://pir.georgetown.edu/pirwww/search/textpsd.shtml

[13] TPC Benchmark H. Decisions Support. http://www.tpc.org/

[14] Valentin, G., Zuliani, M., Zilio, D. C., Lohman, G. M., and
Skelley, A. DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes. ICDE 2000

[15] Zilio, D. C., Rao, J., Lightstone, S., Lohman, G. M., Storm,
A., Garcia-Arellano, C., Fadden, S. DB2 Design Advisor:
Integrated Automatic Physical Database Design. VLDB 2004.

[16] Zilio, D. C., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G.
M., Cochrane, R., Pirahesh, H., Colby, L. S., Gryz, J., Alton,
E., Liang, D., and Valentin, G. Recommending Materialized
Views and Indexes with IBM DB2 Design Advisor. IEEE
International Conference on Autonomic Computing (ICAC)
2004.

[17] Lehner, W., Cochrane, B., Pirahesh, H., and Zaharioudakis,
M. Applying Mass Query Optimization to Speed up
Automatic Summary Table Refresh. ICDE 2001.

