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ABSTRACT 
The selection of the most beneficial indexes and materialized 
views (MVs) is a well-known issue in physical database design. 
The chosen set of indexes and MVs is crucial to the overall 
performance of the DBMS as it relates to specific workloads. 
Since this is such an important aspect of physical database design, 
database administrators (DBAs) spend a great amount of time 
selecting the best indexes and MVs for the purpose of improving 
database performance. In order to reduce the total cost of 
ownership, several DBMSs have tools for automating the physical 
design structure selection process. Both System B and System A 
have such tools, including the System B Advisor [15] and the 
System A Advisor [2]. In this paper, we present an objective 
assessment and comparison of both tools by defining evaluation 
metrics, analyzing recommendation algorithms, extensively 
testing both tools, and by providing a discussion of the results. 

1. INTRODUCTION  
Database management systems (DBMSs) are becoming more and 
more important as their applications multiply to include not only 
banking and internal inventory applications but also real-time and 
batch-process e-commerce systems. Despite the use of caching, 
ultimately the bulk of transactions must rely on the DBMS to 
provide quick and efficient execution of workload queries. 
Unfortunately, good DBAs are hard to come by and, as a result, 
they also require large salaries – increasing the total cost of 
ownership for a DBMS. In reaction to this trend, there has been 
much work done in recent years with the goal of automating 
database administration or, at the very least, reducing the load on 
already over-taxed DBAs. Ground-breaking work on self-
managing DBMSs has been accomplished with respect to the 
recommendation and implementation of the most efficient set of 
indexes and materialized views – known as physical design 
structures (PDSs). These structures provide quick access to data. 
Indeed, formerly, one of the marks of a skilled DBA was the 
ability to implement the most efficient indexes and MVs for a 
given database being accessed with a particular workload. Thanks 
to research done in the last 5 years, there is now less of an onus on 
DBAs to come up with the most efficient mix of indexes and MVs 
for a given scenario because many DBMSs now ship with PDS 
recommendation tools. The two primary DBMSs implementing 
this technology are System B and System A – both of which have 
benefited from a lot of research, such as that found in 
[1,2,3,4,14,15,16]. 

Unlike previous research on automating the selection of the 
best PDSs, both System B’s and System A’s research teams have 
gone far beyond what could be achieved by strictly static 

approaches based on the analysis of integrity constraints, simple 
statistics, and basic schema information [11]. Instead, both teams 
chose to focus on the analysis of real SQL query workloads for 
the purpose of creating recommendations tailored to these 
workloads. Furthermore, they have successfully utilized the cost 
model of their query optimizers to ensure that PDS 
recommendations are actually used by the DBMS – unlike 
previous work, such as [7], which used external cost models. For 
both the System B and System A teams the goal is to generate the 
best recommendations given a set of constraints. The problem 
they face is as shown below:  

Problem statement:  Given a workload W (a set of SQL 
statements), a disk space constraint D, a time limit T, find 
the set of indexes and materialized views 
recommendations that reduces the workload cost the most 
within the time limit T, while using no more space than D. 

Given the problem statement, it is clear that the problem of 
recommending the best PDSs is not easy – especially considering 
the fact that all the queries in the workload need to be considered 
and the fact that an exponential set of PDS combinations must be 
explored. In light of those facts, we are interested in seeing just 
how well the recommendation tools found in System A and 
System B solve the problem stated above. 

In order for an objective comparison to be made we designed the 
appropriate evaluation criteria for assessing the various tests that 
we executed. Tests comparing System A Advisor and System B 
Advisor were evaluated using the concepts of: relative workload 
improvement, improvement estimation accuracy, scalability, 
workload compression, and constraint conformity. The first two 
metrics were used primarily for the first test involving a slightly-
modified TPC-H workload [13] tested using various space 
constraints. The third and fourth metrics were each used to 
evaluate independent tests using other variations of the TPC-H 
workload. The last metric was used to evaluate how well the 
recommendation tools conformed to time and space constraints 
for all the tests executed. The aforementioned tests all involved 
the recommendation of both indexes and MVs. Another set of 
tests was run to compare the recommendations generated in 
indexes-only and MVs-only modes. Other experiments included a 
test that involved swapping the indexes-only recommendations of 
both recommenders and then measuring workload improvement – 
resulting in some surprising results. Finally, we also ran a group 
of tests against a real-world protein sequence database with two 
manually-created workloads. 
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Before we present our results, however, we first provide an 
overview of both the System A Advisor and System B Advisor in 
Section 2, along with a brief comparison of these two tools. In 
Section 3, we discuss the evaluation criteria used for the 
experimental assessment of both recommenders. Afterwards, we 
present the experimental setup and test design in Section 4. The 
experimental evaluation of both tools follows in Section 5. In 
Section 6, we provide some observations and note the limitations 
of both recommenders. Finally, we present related work and our 
conclusion in the last two sections of the paper. 

2. OVERVIEW OF ADVISORS 
In this section, we present an overview and comparison of both 
recommendation tools that were evaluated in our experiments. 
Both tools are generally capable of recommending indexes, 
materialized views, and database partitions. Our focus is on 
recommending both indexes and MVs, indexes only, and MVs 
only. An architectural overview of both recommendation tools is 
presented in Figures 1 and 2, which are taken from [16] and [1]. 

2.1 Input Parameters 
As shown in Figures 1 and 2, a workload is given to both 
recommendation tools. The workload given can be a single SQL 
statement or a file containing several SQL statements. In the case 
of System B, the workload can also be a list of recently executed 
SQL statements available from the query cache or from a 
powerful query management tool included in an extension for 
System B [9]. For System A, a trace file can be used as a 
workload; the trace file can be created by running a profiler tool 
while a workload is being executed against the database. SQL 
statements can be extracted from events in the trace file [10].  

Along with the workload, a space and time constraint is set for 
both recommendation tools. System B Advisor also allows the 
user to enable a sampling option, which is used to gather more 
reliable and accurate estimates for the candidate objects being 
generated. System A Advisor has sampling turned on by default 
[3,14].  

Once the recommendation process is initialized by the user, each 
recommendation tool starts by generating candidate MVs and 
indexes. Having generated the candidate objects, each tool 
proceeds to select the optimal (or near-optimal) configuration 
among the generated candidate objects. 

2.2  Candidate MVs Generation 
Candidate MVs (also known as Materialized Query Tables, or 
MQTs) are generated differently by the two recommendation 
tools. System B considers the following techniques for generating 
MV candidates: 

i. Converting queries in a given workload into MVs. 

ii. Materialization of existing logical (non-materialized) 
views in the database. 

iii. Use of MQO (Multiple-Query Optimization) to generate 
candidate MVs. MQO is a sophisticated technique used 
to find common sub-expressions among multiple 
queries [17]. 

On the other hand, System A uses the concept of “interesting 
table-sets” to generate MV candidates.  

 
Figure 1.     Design Overview of System A Advisor 

 

Figure 2.      Design Overview of System B Advisor 

Basically, a table-set (a subset of tables referenced in a query in 
the workload.) is considered “interesting” if materializing one or 
more views on it leads to a decrease in execution time, i.e. 
workload cost, above a given threshold. After identifying 
interesting table-sets, the System A Advisor generates a set of 
candidate MVs for each query that references an “interesting” 
table-set and then selects the best subset for that particular query. 
The union of the best subsets produces the final set of candidate 
MVs. The algorithm then generates an additional set of “merged” 
MVs that benefit multiple queries [1]. 
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2.3 Candidate Index Generation 
For candidate index generation, System B Advisor uses the 
“Smart column Enumeration for Index Scans” (SAEFIS) 
enumeration algorithm. The algorithm analyzes the predicates and 
clauses of both the workload statements and MV candidates to 
produce candidate indexes. In addition to the SAEFIS algorithm, a 
different enumeration algorithm, namely the “Brute Force and 
Ignorance” algorithm, is also used to generate extra candidate 
indexes. Details about the SAEFIS and BFI algorithms can be 
found in [16]. 

On the other hand, System A Advisor first considers all of the 
“admissible indexes” – that is, indexes that are syntactically 
relevant for the workload and candidate MVs. Afterwards, the 
DTA prunes the space of “admissible indexes” using the query-
specific-best-configuration algorithm, which is detailed in [3]. 

2.3  Configuration Enumeration 
Having generated candidate MVs and indexes, both tools proceed 
to the configuration enumeration phase.  The System B advisor 
first estimates the size (cost) and benefit of each candidate object 
by using the optimizer estimates or, optionally, a sampling 
technique that provides more reliable and accurate size estimates. 
Once the benefit and cost for each candidate object is determined, 
the “Combinatorial Selection Algorithm” is initiated to select 
those objects with the highest benefit-to-cost ratio, that conforms 
to the given space constraint. Afterwards, the algorithm enters a 
swapping stage where it iterates over candidate objects that were 
not chosen before to find a better candidate set. Finally, the 
algorithm filters the solution by eliminating candidate indexes and 
MVs which were not used in the workload. 

For the System A Advisor, configuration enumeration is 
performed by the Greedy(m,k) algorithm, which produces a final 
configuration with a total of k indexes and MVs. The algorithm 
starts by picking an optimal configuration of size m, where m is 
less than or equal to k, through enumerating in an exhaustive 
manner all of the configurations of size m or less. Afterwards, the 
algorithm picks the remaining (k - m) structures greedily, until all 
k physical structures have been chosen, or no further reduction in 
cost is possible, as described in [1,3]. 

2.4 Workload Compression 
In order to improve the scalability of the recommendations tools, 
each vendor has incorporated a workload compression module 
that reduces/compresses the given workload. Both tools have 
entirely different compression algorithm – as described in this 
section. System B Advisor uses a simple built-in workload 
compression module. The module starts by estimating the size of 
all the queries in the workload and then orders them in a 
descending order. Afterwards, the module generates a new 
workload, consisting of the Top K queries, where the total cost of 
those queries is less than or equal to a certain percentage of the 
total workload cost – as presented in Equation 1. 

)(*%)( WorkloadCostXTopKCost ≤             [Equation 1] 

The new workload is then used as the input for the System B 
Advisor. Instead of allocating the responsibility of determining X 
on the user, the compression module uses 3 levels of compression, 
HIGH (X=5), MEDIUM (X=25) and LOW (X=60) [15].  

On the other hand, System A uses a complex workload 
compression technique that uses clustering methods from the field 

of data-mining. The technique uses the concept of a “distance” 
between queries in a workload to remove similar queries from the 
workload up to a certain workload cost increase threshold. Further 
details about System A’s compression technique can be found in 
[5].   

3. EVALUATION CRITERIA 
In order to facilitate an objective comparison between both 
recommendation tools we have developed the following 
evaluation criteria. 

3.1 Relative Workload Improvement  
A key performance metric for the bulk of our tests was relative 
workload improvement. The rationale behind choosing relative 
workload improvement over absolute workload improvement was 
that we wanted to ensure a fair comparison between two different 
DBMSs – each running on a machine with a slightly different 
CPU speed. In either case, in order to measure workload 
improvement we had to establish a baseline for each workload 
used in our tests. Having established a baseline, we derived the 
relative workload improvement for a given recommendation tool 
by measuring the overall change in workload execution time 
before and after the implementation of recommended indexes and 
MVs. Since we had decided on using relative workload 
improvement, the change in execution time was measured using a 
percentage value. Comparisons between recommendation tools 
could then be made using this value. 

3.2 Improvement Estimation Accuracy 
In order to determine the improvement estimation accuracy of 
each recommendation tool the final estimate given by the tool was 
compared with the actual workload improvement measured after 
implementing recommendations. Since improvement estimates 
were given in percentage values, deriving the estimation accuracy 
in terms of percentage error simply involved taking the absolute 
difference of the relative workload improvement and the 
estimated improvement. Although this performance metric could 
be construed as a query optimizer performance metric, we decided 
that it was nevertheless a good idea to evaluate estimation 
accuracy since it is integral to the proper functioning of each 
recommendation tool. 

3.3 Scalability of Recommendation Tools 
A simple, yet effective, performance metric was used to evaluate 
the scalability of each recommendation tool; the metric used was 
the ability to process SQL workloads scaled from 19 queries up to 
420 queries. In order to facilitate a proper evaluation of 
scalability, all these tests were run with unlimited 
recommendation time. Furthermore, workload compression was 
disabled so that raw scalability could be tested. 

3.4 Workload Compression Evaluation 
Since each vendor claims to own a workload compression 
technique that does not sacrifice the quality of the 
recommendations, we decided to assess the impact of the 
workload compression. The metrics used to evaluate workload 
compression included: a) the decrease in recommendation time, 
and b) the decrease in the quality of the recommendations. The 
decrease in recommendation quality was determined by the 
percentage increase in workload execution time when the post-
recommendation time of recommendation without compression is 
subtracted from the post-recommendation time observed for 
recommendations generated with compression. 
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Unfortunately, we found that System A does not provide means to 
enforce workload compression. However, System B’s advisor 
allows us to specify the level of workload compression. In order 
to assess the workload compression algorithms used by both 
vendors, we designed variations of the TPC-H workloads that 
include 105, 210, 306, and 420 queries  

3.5 Constraint Conformity 
Time and space constraints are important parameters for both 
recommendation tools. We are interested in assessing how well 
both recommenders conform to those constraints. For an objective 
assessment, it is important to carefully select those constraints. 
Further details concerning constraint design and selection are 
presented in Section 4.2. 

4. EXPERIMENTAL SETUP 
In this section we present the setup and design of our experiments. 
The experimental systems are first presented, along with 
important procedures. Our test design is then described – focusing 
on how we designed and selected parameter values. The section 
finishes with a description of the databases and workloads used. 

4.1 Environmental Setup 
Our experiments were run on two different systems – one for each 
DBMS. Both systems were Pentium 4 systems running Windows 
XP Professional with 1 GB of RAM. However, System B was 
installed on a system having a 2 x 2.8 GHz CPU, while System A 
ran on a machine having a 2 x 3.2 GHz CPU. 

Since both Databases run on a dual CPU machine, they are both 
capable of exploiting parallelism in query execution. Indeed, we 
have noticed that SQL Server utilizes parallelism quite well for 
query execution, especially when compared to System B. 
Therefore, we have disabled parallelism for both databases in 
order to put both on the same level in terms of query execution 
times.  

Before executing workloads or running recommendation tools the 
database table statistics were updated. After recommendations 
were generated and implemented the database cache and buffer 
pool were emptied to minimize the factors influencing workload 
execution time. Having assurance that the queries being executed 
do not benefit from the query cache and DBMS buffer pool, the 
workload was executed and the execution time was recorded for 
comparison against a baseline. 

4.2 Test Design 
Since each database vendor has its own optimizer and its own way 
of processing queries, we had to carefully design the experimental 
tests. Objective evaluation of both recommendation tools required 
us to properly set the parameters and constraints for both 
recommendation tools.  

As mentioned before, both recommendation tools have various 
tuning parameters. The primary parameters we used in our 
experiments imposed space and time constraints and turned 
sampling on/off. Unfortunately, we could not use these parameters 
to their full potential due to certain issues. For instance, we 
noticed that System B’s Advisor violates the time constraint in 
many cases. Clearly this is because it considers the time constraint 
only at the final swapping stage. We also realized that System A 
was running on a system with a faster CPU than System B. Both 
issues could lead to an unfair comparison of recommendation 
results and time constraint conformity results. Therefore, we have 

decided to use an unlimited time constraint for all of our 
experiments. 

Although not as problematic as the time constraint parameter, we 
have opted to compute the space constraint as a percentage of 
current database size. Our reasoning is illustrated by a simple 
index space calculation: an index on the TPC-H lineitem table 
consumes 216 MB in System B while it consumes 197 MB in 
System A. Clearly, it would be unfair to give the same amount of 
storage space as a constraint since both DBMSs have different 
storage requirements for the same indexes. The space constraints 
that we decided on were the following: 30%, 120%, 200%, and 
500%. The first constraint was chosen to represent a minimum 
value that restricted MVs and indexes to a space less than the size 
of the database. 120% was chosen as the token value above the 
database size. The other values were chosen to determine how 
well each recommender performs with large space constraints. 

Other than space and time constraints, we decided to set the 
System B sampling parameter to “ON” for all but one test. This 
was done in the interest of increasing the objectivity of our 
testing, since sampling is on by default in SQL Server.  

4.3 Databases and Workloads 
For our tests we have used two data sets: the often-used TPC-H 
Benchmark [13] and the PIR Protein Sequence Database [12]. The 
original data size was 1 GB of data in 8 tables for the TPC-H 
dataset and 980 MB of data in 16 tables for the PROTEIN dataset.  

As for the workloads, for TPC-H we have used variations on the 
original 22-queries workload which include workloads with 19, 
21, 105, 210, 306, and 420 queries. The first workload we used 
was the 21-query workload (TPCH-1) – which had query 15 
removed. We had to remove query 15 because System B Advisor 
could not handle “CREATE VIEW” statements within the 
workload. The 19-query workload, referred to as TPCH-2, was 
created in reaction to test results found for the TPCH-1 workload. 
In order to provide a more fair comparison we decided to remove 
queries 17 and 20 from TPCH-1, since their baseline execution 
times were large when run using SYSTEM B – introducing a bias 
in favour of SYSTEM B. For the protein database, we have 
constructed two of our own workloads, using different types of 
query-families.  We developed queries with potentially “hot” 
indexes, where a “hot” index is defined as an index on a column 
in a (1) WHERE clause, (2) GROUP BY clause, and/or (3) 
ORDER BY clause. The PROTEIN-1 workload consisted of 35 
queries, while the PROTEIN-2 workload consisted of 30 queries.    

5. EXPERIMENTAL EVALUATION 
Our experimental results are presented in this section. Here we 
present results for the TPC-H database comparing workload 
improvement for various space constraints. Next, indexes-only 
recommendations for both recommenders are compared with 
MVs-only recommendations and combined recommendations. 
After these tests, we swap indexes-only recommendations 
generated by both recommendation tools and compare the change 
in improvement over the native recommendation. We then present 
results for our tests using the PIR protein database. Following our 
workload improvement results we also evaluate the results found 
for the workload improvement estimation accuracy, scalability, 
and workload compression tests. 
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5.1 Workload Improvement 
5.1.1 Results using TPCH-1 
Our first experiment was to assess the impact of both advisors on 
improving the workload execution cost. In the first step of 
experiments, performed with the TPCH-1 workload, we varied the 
space constraint, and provided an unlimited time constraint for 
both advisors. The space constraint used for the experiments was: 
30%, 120%, 200%, and 500%. The results indicating the actual 
workload improvement are presented in Figure 3.  

 

Figure 3.     Space Constraint Test Results 

As expected, the graph shows that the actual workload increased 
for both SYSTEM B and SQL Server whenever the space 
constraint was increased, since there is more space available for 
extra MVs and indexes. Also observe that the actual improvement 
for SYSTEM B was significantly higher than for SQL Server – 
for all of the tests. 

5.1.2 Results using TPCH-2 
For the next set of experiments, we used TPCH-2 to determine the 
performance of the recommendation tools for the following 
recommendation modes: indexes only, MVs only, and both 
indexes and MVs. We also ran a test to determine the 
improvement when indexes-only recommendations were 
swapped. For both tests, the space constraint was fixed at 200%, 
since we believe such a constraint is reasonable for most 
databases. 

First, we present the baseline execution time for both databases. 
As can be noted in Figure 6 (on the next page), both SYSTEM B 
and SQL Server baselines show similar execution time patterns. 
Having established a more objective baseline we present our first 
test using TPCH-2. The actual TPCH-2 workload improvement 
achieved for each of the three recommendation modes is shown in 
Figure 4, which shows that both tools produced significant 
workload improvement for the first two recommendation modes. 
Yet, SYSTEM B had a larger improvement than SQL Server, 
particularly when only MVs were recommended. Such a result 
can be partially explained by the fact that SYSTEM B 
recommended exactly twice as many MVs as SQL Server did (8 
vs. 4). Furthermore, after the analysis of the query execution 
plans, we observed that, for SQL Server, each of the 4 MVs only 
benefited a single query each. On the other hand, for SYSTEM B, 
the 8 recommended MVs benefited a total of 10 queries. Finally, 
for SYSTEM B, we observed a significant reduction in the 
execution time of queries that exploited MVs. For instance, the 
execution time for query 6 decreased from 21.574 seconds to 

1.297 seconds. However, the most improved query found for SQL 
Server, query 4, had its execution time decreased from 23.667 
seconds to 18.821 seconds. Clearly, SYSTEM B utilized the 
recommended MVs better than SQL Server did. 

 

Figure 4.      Results for Various Recommendation Modes 

After running our first batch of TPCH-2 tests we could use the 
indexes + MVs recommendation result to give an idea of the 
TPCH-1 baseline bias. By comparing the TPCH-2 and TPCH-1 
results for the 200% space constraint we noted that SYSTEM B 
still has superior improvement. Hence, we decided to keep our 
TPCH-1 test results.  

To further verify our assumption that SYSTEM B’s advisor 
results in a higher workload improvement than System A’s DTA, 
we have decided to swap the indexes-only recommendations and 
compare the results. 

5.1.3 Swapped Recommendations 
An important condition in our swapped recommendations test was 
the requirement that the recommendations were not to exceed the 
provided disk space constraint. In other words, if SYSTEM B’s 
swapped recommendations consumed over 200% of the SQL 
Server TPC-H database size, the results would be insignificant, 
and vice-versa. Fortunately, in our swapped indexes only 
experiment, the space constraint was not violated. The results of 
the experiment are shown in Figure 5. 

 

Figure 5.     Results found for Swapped Recommendations 

Although we could not implement the SQL Server 
recommendations in SYSTEM B due to reasons given later in this 
section, we found that after applying the recommendation of 
SYSTEM B on SQL Server, workload execution time improved 
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by 6.476% for SQL Server when compared to its original recommendation. 
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Figure 6.     Baseline Query Execution Times for TPCH-2 Workload

As shown in Figure 5, the swapped recommendations for SQL 
Server improved the actual workload by 62.86%, even higher than 
both SYSTEM B and SQL Server’s original indexes-only 
improvement, which suggests that SQL Server could have 
provided better recommendations. We believe there are several 
reasons for that result. First, we note that SYSTEM B 
recommended 38 indexes while SQL Server recommended only 
13 indexes. The number of indexes recommended by both 
advisors is shown in Table 1. 

Table 1     Indexes Recommended in INDEXES-ONLY Test 

Table # Indexes 
(SYSTEM B) # Indexes (SQL Server) 

LINEITEM 11 10 

ORDERS 7 2 

CUSTOMER 5 0 

NATION 5 0 

SUPPLIER 4 0 

PARTSUPP 3 1 

PART 2 0 

REGION 1 0 

As shown in Table 1, SYSTEM B recommended more indexes for 
each table in the database. Although we do not claim that more 
indexes implies more workload improvement, there does appear 
to be a strong correlation between the recommendation of many 
indexes that are used by multiple queries and the overall 
workload benefit gained from these indexes. Indeed, although 
some queries had a longer execution time on SQL Server with 
SYSTEM B recommendations, the total execution time after those 
recommendations were implemented on SQL Server was less by 
22.424 seconds. 

The largest improvement was found for query 5, which took 
18.408 seconds to execute on SQL Server with its own 
recommendations and only 5.693 seconds using SYSTEM B 
recommendations. Query 7 also had an impact on the difference 

of both actual workload improvements, since it took 10.751 
seconds to execute with original recommendations and 6.296 
seconds with SYSTEM B recommendations. The other queries 
had negative or negligible improvement. After analyzing the 
execution of both queries, we have realized that query 5, when 
executed with SYSTEM B’s recommendations, exploits 6 
indexes, on the following tables: NATION, REGION, 
SUPPLIER, LINEITEM, ORDERS and CUSTOMER. However, 
when the same query is executed with SQL Server 
recommendations, it uses one primary (already existing) index 
and two recommended indexes on the 2 largest tables in the 
database – namely LINEITEM and ORDERS.  

We note that the original execution plan of query 5 uses only one 
primary index-scan and the rest of the operations are table-scans, 
whereas the execution plan of query 7 does not exploit any 
indexes and relies completely on table-scans. 

For query 7, when using SQL Server recommendations, the 
optimizer uses the same two indexes used when query 5 was 
executed, namely, indexes on the LINEITEM and ORDERS 
tables.  In contrast, when SYSTEM B’s recommendations were 
applied, the optimizer chose 3 different indexes (different than 
those chosen for query 5) on CUSTOMER, ORDERS and 
NATION, and the same indexes used in query 5 for LINEITEM 
and SUPPLIER tables. We believe that the rich set of indexes 
recommended by SYSTEM B was the main factor in enhancing 
both query 5 and query 7 when executed by SQL Server, resulting 
in a 6.476% increase in actual workload improvement. 

An important note here is that although the size of both REGION 
and NATION tables is small compared to other tables, SYSTEM 
B’s indexes on these tables belonged to the set of indexes that 
improved query 5 and query 7 when executed by System A. 
Unlike SQL Server, SYSTEM B considers a very huge space of 
candidate indexes. Furthermore, it does not perform any pruning, 
whereas SQL Server does. The latter considers “admissible” 
indexes and further prunes those indexes using the query-specific-
best-configuration algorithm described in [3]. Since it does no 
pruning, SYSTEM B’s algorithm results in a larger index space, 
and therefore a potentially better workload improvement. 
However, not pruning the candidate structures space may have a 
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negative effect on the scalability of the recommendation tool, as 
described in Section 5.3. 

Given the surprising results for implementing SYSTEM B 
recommendations on SQL Server, it was unfortunate that we were 
unable to test the recommendations provided by SQL Server on 
SYSTEM B. Such a test was unfeasible due to the fact that 
creating an index with an INCLUDE clause in SYSTEM B 
requires that the index be UNIQUE [8]. The previous restriction 
was not imposed by SQL Server, so not all its recommendations 
were compatible with SYSTEM B.  

5.1.4 Results using PROTEIN Workloads 
The last of our workload improvement experiments was done 
against a real-world database and two manually generated 
workloads. The results of our test are shown below, in Figure 7. 

 

Figure 7.     Improvement found for Protein Workloads 

It is evident once again that SYSTEM B provided superior results. 
A partial explanation for such a large difference is that SYSTEM 
B recommended at least 3 times the number of indexes that SQL 
Server did and more than twice the number of MVs. However, it 
is more important to note that the SQL Server baseline execution 
time was much shorter than SYSTEM B, so a high percentage of 
improvement would be hard to attain. To get a rough idea as to 
whether this was the primary factor involved, we considered 
SYSTEM B’s improvement found for only those PROTEIN-2 
queries whose SYSTEM B baseline execution time was less than 
a given threshold. The threshold was set to be the maximum 
individual query execution time for SQL Server’s baseline. As a 
result, SYSTEM B’s improvement dropped to 20.77%. Given that 
SQL Server’s improvement was 12.92%, the new result is 
comparable to previous workload improvement test results.  

5.2 Improvement Estimation Accuracy 
In this section, we present a comparison between the estimated 
and actual workload improvement as returned by both 
recommenders. We then present the average error of each 
workload’s improvement estimates. The actual and estimated 
improvements found for both recommenders are shown in Figures 
8 and 9 for TPCH-1 and TPCH-2 workloads respectively.  

 

Figure 8.     TPCH-1 Improvement Estimates 

 

Figure 9.     TPCH-2 Improvement Estimates 

As can be seen for both workloads, in most cases SYSTEM B’s 
estimates were a lot more accurate than those of SQL Server. In 
addition, for TPCH-1, SYSTEM B never over-estimated the 
actual workload improvement, while SQL Server always over-
estimated the actual improvement. 

Using the Figure 8 as a baseline, it is clear that for the MVs-only 
recommendation (shown in Figure 9) SYSTEM B breaks its trend 
of never over-estimating improvement and provides a somewhat 
liberal estimate. We observe that the only case where SQL Server 
provides a better estimate than SYSTEM B is shown in Figure 9 
for the indexes-only test. Using the results shown in the previous 
figures we derived the average estimation error, which is 
displayed in Figure 10. 
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Figure 10.     Average Improvement Estimation Error 
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Clearly, the overall estimation accuracy for both workloads was 
better for SYSTEM B. Note, however, that estimation accuracy is 
highly dependent on the optimizer. Nevertheless, we present these 
results as a part of our broad assessment of both recommendation 
tools.  

5.3  Scalability Test 
For the scalability test, we wanted to test the “raw” scalability of 
both advisors, that is, without the benefit of workload 
compression. We disabled workload compression for SYSTEM B 
using the “-k OFF” parameter for System Badvis command line. 
Unfortunately, System A does not provide means to 
enable/disable workload compression, although [2] indicates that 
the module is incorporated into System A. Nevertheless, there is 
much evidence leading us to suspect that the workload 
compression module is not installed, or is not enabled. First, in 
contrast to SYSTEM B workload compression, there is no 
application documentation on any available workload 
compression parameters for the DTA. Second, we have observed 
that when the DTA is executed with a large workload, it takes a 
very long time compared to System B Advisor with workload 
compression – almost 6 hours with a 210-query workload. Since 
SYSTEM B took just over 4 hours to tune the same workload 
without compression, this is compelling evidence for our 
aforementioned conclusion. 

Table 2    Scalability Test Results 

 For our scalability tests the following workloads have been 
provided for both recommenders: TPCH-1, TPCH-2, TPCH-3, 
TPCH-4, TPCH-5 and TPCH-6, consisting of 19, 21, 105, 210, 
306 and 410 queries respectively. For these tests we are simply 
interested whether or not the recommendation task successfully 
completed with recommendations. The results of the tests are 
presented in Table 2, which indicates that SQL Server was able to 
cope with all the workloads, and provided recommendations for 
each test.  

On the other hand, SYSTEM B was not able to provide 
recommendations for the 420-query workload (TPCH-6) when 
compression was disabled, unlike when compression was set to 
MEDIUM. The SYSTEM B advisor consumed all of the available 
disk space and exited with a critical error after evaluating 137,670 
configurations. This unusual result can be explained by 
considering that the System B Advisor selection algorithm injects 
a huge amount of virtual indexes and materialized views into the 
database, generates their statistics, and then computes the 
execution cost of every workload query [16]. 

As a result, the free disk space on which SYSTEM B was 
installed, which was approximately 18 GB was consumed 
completely by the System B Advisor. We therefore conclude that 
the SYSTEM B advisor does not scale with large workloads 
because it does not substantially prune the space of candidate 
indexes and MVs. On the other hand, it appears that System A is 
able to deal with large workloads quite well, assuming that 
workload compression was not incorporated into the Beta version 
we were using. 

5.4 Workload Compression Evaluation 
In this experiment, we wanted to assess the impact of workload 
compression on both the advisor execution time and the drop in 
quality of the recommendations produced. Unfortunately, we 
could not assess SQL Server’s workload compression module due 
to the reasons noted earlier. Therefore, only SYSTEM B workload 
compression module is assessed. 

As mentioned earlier, SYSTEM B has 4 options for workload 
compression: OFF, LOW, MEDIUM and HIGH. We have 
decided to use MEDIUM and HIGH for assessing the impact of 
workload compression on the advisor execution time, using a 
workload consisting of 105 queries (TPCH-3). Figure 11 shows 
the impact of the workload compression on the advisor execution 
time when the TPCH-3 workload was used. 
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Figure 11.    SYSTEM B Workload Compression Results 

As displayed in the above graph, the original advisor execution 
time (with no compression) was approximately 4.3 hours. When 
workload compression was enabled with MEDIUM and HIGH, 
the execution time dropped to 6.3 and 7.3 minutes respectively. 
Clearly, the reduction of execution time was very impressive. 

Since MEDIUM is the default level of compression, we have 
decided to test the impact of workload compression on the drop of 
recommendation quality in using that level. Essentially, we ran 
the advisor using the TPCH-3 workload, MEDIUM compression, 
unlimited time, and a 200% space constraint. We then 
implemented the recommendations, and compared the actual 
workload improvement with the actual workload improvement 
achieved by the recommendations when workload compression 
was disabled (OFF). The results are show in Figure 12. 

# of 
Queries 

SYSTEM B 
Advisor  
(no comp.) 

SYSTEM B 
Advisor  
(med. comp.) 

System A 
Advisor 

19 pass pass pass 

22 pass pass pass 

105 pass pass pass 

210 pass pass pass 

306 pass 
(no sampling) 

pass pass 

420 fail pass pass 
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Impact of  MEDIUM Workload Compression (System B - TPCH-3)
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Figure 12.    Impact of Workload Compression on SYSTEM B 

As shown in Figure 12, SYSTEM B’s workload compression 
technique significantly reduces the advisor execution time – up to 
97%. On the other hand, we noticed that the workload execution 
time increased by 43% compared to the workload execution time 
when “no compression” recommendations were implemented. 
Our rationale of why such a dramatic trade-off occurred is based 
on the simplistic approach of SYSTEM B’s compression 
algorithm. The algorithm, as explained earlier, picks up the top K 
queries where the total cost of those queries is less than or equal 
to a certain percentage of the workload cost. As a result, in many 
cases where almost of all the queries in the workload have a high 
cost, as is the case for TPC-H queries, many queries in the 
workload are pruned without considering the fact that they also 
have high execution costs. As a result, the drop in quality in some 
cases may be unsatisfactory. We believe SYSTEM B’s algorithm 
is geared towards pruning and not compression, even though the 
authors claim that their approach compresses workloads and is 
comparable with SQL Server’s approach, as stated in [15]. To 
further illustrate the weakness of SYSTEM B’s workload 
compression approach, we present the following scenario: 
Consider a workload, consisting of 50 queries, where the cost of 
the any query is determined using the following equation, where I 
is the query number: 

F(I) = 5000 – 20 * I                          [Equation 2] 

Using Equation 2, the first query’s cost is 5000, the next query 
costs 4980, the next costs 4960, and so on. Therefore, the total 
workload cost =  5000 * 50 – 20 * [50 * (50 + 1) / 2] = 224,500 
timerons (a SYSTEM B metric). Assuming medium compression 
is enabled, the algorithm will pick the top K queries where their 
total cost is less than or equal to 25% of total workload cost (i.e., 
56,125 timerons). Given the aforementioned threshold, only 11 
top K queries will be chosen since the total cost of those queries is 
less than or equal to 56,125 timerons. The rest of the 39 queries 
will be pruned without any consideration. We argue that it is 
common to have a workload consisting of high cost queries where 
the difference between the costs of all queries is not very 
significant. In such a scenario, SYSTEM B’s compression 
algorithm prunes a large number of queries without any 
consideration, and produces unsatisfactory results. 

Even though we did not test SQL Server’s workload compression 
module, which based on a complex technique that relies on data-

mining concepts [5], we strongly believe it is more efficient than 
SYSTEM B’s approach, since it takes into account the similarities 
of the queries in the workload. Not to mention, it has been shown 
in [5] that the SQL Server workload compression module may 
actually lead to higher-quality recommendations than those 
produced using an uncompressed workload. 

6. OBSERVATIONS AND LIMITATIONS 
While experimenting with both SYSTEM B and SQL Server 
advisors, we have observed several anomalies and limitations 
within both advisors. In this section, we discuss and analyze them 
in detail. 

6.1  “Suffered Queries” 
After implementing the recommendations produced by both 
advisors, we have noticed that some of the workload queries have 
“suffered”. That is, their execution time took longer after 
applying the recommendations of the advisor. For example, when 
using the TPCH-1 workload on SYSTEM B, and running the 
advisor with unlimited time and a space constraint of 500%, we 
noticed that query 2 had a longer execution time after applying 
the recommendations; the query took 6.531 seconds before the 
recommendations were applied and 12.046 seconds after, a 5.515 
second increase in execution time. It should be noted that this 
issue is not the caused by the advisor, but rather by the optimizer. 
By analyzing the optimizer’s execution plan for query 2 before 
and after the recommendations, we have noticed that all of the 
table-scan operations were swapped by an unclustered index-scan 
when the recommendations were applied. Such a swapping 
resulted in increased execution cost, since for that particular 
query, most of the rows of the referenced tables were fetched 
(having a high selectivity) and the use of an unclustered index-
scan adds an overheard to the total I/O cost. It is important to note 
the optimizer depends heavily on the current statistics, which we 
updated at every stage of the recommendation and testing process.  

6.2  SYSTEM B “Indexes Only” Mode 
We have noticed that, upon giving the TPCH-2 workload as an 
input for the SYSTEM B advisor and running it in “indexes only” 
mode, the advisor does not generate any recommendations when 
given a space constraint of up to 3 GB, even though it evaluates 
3082 solutions. Yet, when a space constraint of 3100 MB was 
given, the advisor recommended 38 indexes with an actual 
workload improvement of 61.95%. The reason behind these 
unusual results was clear after we queried the 
ADVISE_WORKLOAD table and discovered that the 
COST_BEFORE and COST_AFTER columns, which represent 
the estimated cost for a query before and after implementing 
recommendations, for all 19 queries were the same. What is not 
clear is how the addition of only 100 MB to the space constraint 
had the impact of positively changing the COST_AFTER value 
for 17 out of 19 queries, resulting in an estimated improvement of 
37.86%. 

To further investigate this issue, we ran the advisor in “indexes-
only” mode and supplied it with the PROTEIN-1 workload and a 
small space constraint of 500 MB. Unlike the TPCH-2 workload 
results, the advisor recommended 7 indexes that would improve 
the workload by 1.55%. We conclude that the complex structure 
of the TPC-H queries may have caused the advisor not to 
recommend any indexes within a space constraint of 3GB. 
Nevertheless, we admit that such a “no recommendation” result is 
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not convincing, and that it bears further investigation and analysis 
with the help of System B’s support team. 

6.3  System B’s Sampling vs. No Sampling 
The authors of [16] claimed that with sampling enabled, the 
System B advisor is capable of obtaining more accurate statistics 
and, thus, higher quality recommendations. In light of the above 
statement, we assessed the impact of enabling sampling in terms 
of the advisor execution time and the actual workload 
improvement. We note that sampling is used only for obtaining 
statistics for candidate MVs, but not statistics for candidate 
indexes. We ran the System B advisor in “Indexes and MVs” 
mode, with an unlimited time constraint, a 200% space constraint, 
and the TPCH-2 workload. The results are presented in Table 3: 

Table 3      Sampling Parameter Test Results 

Sampling # of 
Indexes 

# of 
MVs 

Estimated 
Improvement 

Actual 
Improvement 

Advisor 
Execution 

Time 
(minutes) 

ON 38 8 71.46 % 72.033 % 36.02 

OFF 32 6 57.54 % 54.085 % 2.53 

From the results, we note that the number of recommended 
indexes and MVs increased when sampling was enabled. Indexes 
increased from 32 to 38 and MVs from 6 to 8. The addition of 
those new indexes and MVs resulted in increasing both the 
estimated and actual workload improvement, verifying the claim 
presented in [16]. We also note that when sampling was enabled, 
more accurate statistics lead to an improvement estimate that was 
very close to the actual improvement. In contrast, when sampling 
was disabled, the improvement estimate was inaccurate and 
overestimated the actual improvement.  

Despite the advantages obtained when sampling is enabled, one 
can notice its trade-off in the significant increase of the advisor 
execution time. In this particular recommendation experiment, the 
advisor execution time was increased by 1344% – a significant 
increase. It is also important to note that a time constraint of 5 
minutes given to the advisor with sampling enabled and all other 
parameters remaining as previously mentioned, would have been 
violated easily. This violation is due to the nature of the advisor’s 
selection algorithm, which only takes into account the time 
constraint at the final swapping stage.  

7. RELATED WORK 
As far as we are aware, there has not been any direct comparison 
between two autonomous recommenders in the literature of 
database systems. However, the authors of [6] designed a 
benchmark for autonomic configuration recommenders, which 
can be used to compare the quality of recommendations produced 
by one or more recommenders on the same database system. 
These authors note that the question of comparing two 
autonomous recommenders is not an objective of their work and 
should be addressed separately. Hence, we have focused on 
comparing two different recommenders running on two different 
database systems.  

In addition, the authors of [6] proposed a new metric, namely 
“cumulative frequency”, for assessing workload 
recommendations. We argue that such a metric is not effective in 
comparing recommenders on different database systems, due to its 

high dependence on the execution order of the queries in the 
workload.  

8. CONCLUSION 
After a broad and extensive experimental evaluation of two 
recommendation tools capable of producing integrated 
recommendations containing both indexes and MVs, it is clear 
that both the System A Advisor and System B Advisor are very 
useful for database administrators. They allow for significant 
improvements to be made to complex real and synthetic 
workloads. Nevertheless, after presenting what we hope is an 
objective assessment, we note that the System B Advisor was 
better than the System A Advisor in two key areas: relative 
workload improvement and improvement estimation accuracy. 
Compared to System B, the System A Advisor was better in terms 
of constraint conformity, scalability to large workloads, and, in 
our algorithmic analysis, workload compression.  

Future work in this area should include an investigation of the 
impact of having UPDATE queries in the workload, and how their 
associated negative impact affects the relative workload 
improvement and the overall quality of the recommendations. 
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